Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Aircraft Ground Deicing/Anti-Icing Processes

2024-04-29
WIP
AS6285F
This SAE Aerospace Standard (AS) establishes the minimum requirements for ground-based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models.NOTE: Refer to particular aircraft operator or aircraft manufacturer’s published manuals and procedures.The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush, or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 (Type I fluid) and AMS1428 (Type II, III, and IV fluids).All guidelines referred to herein are applicable only in conjunction with the applicable documents.
Technical Paper

Influence of Machining Parameters on Tungsten Carbide Inserts in ANSYS Analysis of Maraging Steel Machining

2024-04-29
2024-01-5057
The machining process is employed to transform a workpiece into a predefined geometry with the assistance of a cutting tool. Throughout this process, the cutting tool undergoes various adverse effects, including deformation, stress, thermal gradient, and more, all of which impact tool sharpness, surface finish, and tool life. These outcomes are also influenced by cutting parameters, specifically cutting speed, feed rate, and depth of cut. The present investigation aims to demonstrate the application of ANSYS analysis software in predicting stress, deformation, thermal gradient, and other factors on the tool insert tip for various machining parameters. To achieve this, an experimental setup was arranged to collect cutting force and temperature data using a dynamometer and thermocouples during the machining process of maraging steel with a tungsten carbide tool insert. Experiments were conducted with different combinations of machining parameters using design of experiments (DoE).
Technical Paper

Research on Artificial Potential Field based Soft Actor-Critic Algorithm for Roundabout Driving Decision

2024-04-09
2024-01-2871
Roundabouts are one of the most complex traffic environments in urban roads, and a key challenge for intelligent driving decision-making. Deep reinforcement learning, as an emerging solution for intelligent driving decisions, has the advantage of avoiding complex algorithm design and sustainable iteration. For the decision difficulty in roundabout scenarios, this paper proposes an artificial potential field based Soft Actor-Critic (APF-SAC) algorithm. Firstly, based on the Carla simulator and Gym framework, a reinforcement learning simulation system for roundabout driving is built. Secondly, to reduce reinforcement learning exploration difficulty, global path planning and path smoothing algorithms are designed to generate and optimize the path to guide the agent.
Technical Paper

Federated Learning Enable Training of Perception Model for Autonomous Driving

2024-04-09
2024-01-2873
For intelligent vehicles, a robust perception system relies on training datasets with a large variety of scenes. The architecture of federated learning allows for efficient collaborative model iteration while ensuring privacy and security by leveraging data from multiple parties. However, the local data from different participants is often not independent and identically distributed, significantly affecting the training effectiveness of autonomous driving perception models in the context of federated learning. Unlike the well-studied issues of label distribution discrepancies in previous work, we focus on the challenges posed by scene heterogeneity in the context of federated learning for intelligent vehicles and the inadequacy of a single scene for training multi-task perception models. In this paper, we propose a federated learning-based perception model training system.
Technical Paper

Signal Control of Urban Expressway Ramp Based on Reinforcement Learning

2024-04-09
2024-01-2875
With economic development and the increasing number of vehicles in cities, urban transport systems have become an important issue in urban development. Efficient traffic signal control is a key part of achieving intelligent transport. Reinforcement learning methods show great potential in solving complex traffic signal control problems with multidimensional states and actions. Most of the existing work has applied reinforcement learning algorithms to intelligently control traffic signals. In this paper, we investigate the agent-based reinforcement learning approach for the intelligent control of ramp entrances and exits of urban arterial roads, and propose the Proximal Policy Optimization (PPO) algorithm for traffic signal control. We compare the method controlled by the improved PPO algorithm with the no-control method.
Technical Paper

Simulation of Vehicle Speed Sensor Data for Use in Heavy Vehicle Event Data Recorder Testing

2024-04-09
2024-01-2889
Heavy Vehicle Event Data Recorders (HVEDRs) have the ability to capture important data surrounding an event such as a crash or near crash. Efforts by many researchers to analyze the capabilities and performance of these complex systems can be problematic, in part, due to the challenges of obtaining a heavy truck, the necessary space to safely test systems, the inherent unpredictability in testing, and the costs associated with this research. In this paper, a method for simulating vehicle speed sensor (VSS) inputs to HVEDRs to trigger events is introduced and validated. Full-scale instrumented testing is conducted to capture raw VSS signals during steady state and braking conditions. The recorded steady state VSS signals are injected into the HVEDR along with synthesized signals to evaluate the response of the HVEDR. Brake testing VSS signals are similarly captured and injected into the HVEDR to trigger an event record.
Technical Paper

Simulator Development for Vehicle Localization Using Low Earth Orbit Satellites

2024-04-09
2024-01-2846
This paper investigates the utilization of Low Earth Orbit (LEO) satellites for vehicle localization and conducts a comparative analysis with traditional Global Navigation Satellite Systems (GNSS)-based methods. With the rise of LEO satellite constellations, such as Starlink, LEO-based vehicle localization may offer solutions to GNSS-related challenges. With a large number of satellites and short communication distance, the LEO-based method has great potential to improve accuracy, reduce warm-up time, and provide a robust localization solution for vehicle applications. In this paper, a dedicated LEO satellite simulator is presented, adaptable to various LEO constellations, making it relevant for evolving technologies beyond older LEO systems like Orbcomm or Iridium. The simulator includes satellite trajectory generation, observable satellite identification, and vehicle localization.
Technical Paper

Energy Efficiency Technologies of Connected and Automated Vehicles: Findings from ARPA-E’s NEXTCAR Program

2024-04-09
2024-01-1990
This paper details the advancements and outcomes of the NEXTCAR (Next-Generation Energy Technologies for Connected and Automated on-Road Vehicles) program, an initiative led by the Advanced Research Projects Agency-Energy (ARPA-E). The program focusses on harnessing the full potential of Connected and Automated Vehicle (CAV) technologies to develop advanced vehicle dynamic and powertrain control technologies (VD&PT). These technologies have shown the capability to reduce energy consumption by 20% in conventional and hybrid electric cars and trucks at automation levels L1-L3 and by 30% L4 fully autonomous vehicles. Such reductions could lead to significant energy savings across the entire U.S. vehicle fleet.
Technical Paper

Modeling & Validation of a Digital Twin Tracked Vehicle

2024-04-09
2024-01-2323
Digital twin technology has become impactful in Industry 4.0 as it enables engineers to design, simulate, and analyze complex systems and products. As a result of the synergy between physical and virtual realms, innovation in the “real twin” or actual product is more effectively fostered. The availability of verified computer models that describe the target system is important for realistic simulations that provide operating behaviors that can be leveraged for future design studies or predictive maintenance algorithms. In this paper, a digital twin is created for an offroad tracked vehicle that can operate in either autonomous or remote-control modes. Mathematical models are presented and implemented to describe the twin track and vehicle chassis governing dynamics. These components are interfaced through the nonlinear suspension elements and distributed bogies.
Technical Paper

A Survey of Vehicle Dynamics Models for Autonomous Driving

2024-04-09
2024-01-2325
Autonomous driving technology is more and more important nowadays, it has been changing the living style of our society. As for autonomous driving planning and control, vehicle dynamics has strong nonlinearity and uncertainty, so vehicle dynamics and control is one of the most challenging parts. At present, many kinds of specific vehicle dynamics models have been proposed, this review attempts to give an overview of the state of the art of vehicle dynamics models for autonomous driving. Firstly, this review starts from the simple geometric model, vehicle kinematics model, dynamic bicycle model, double-track vehicle model and multi degree of freedom (DOF) dynamics model, and discusses the specific use of these classical models for autonomous driving state estimation, trajectory prediction, motion planning, motion control and so on.
Technical Paper

Virtual Methodology for Active Force Cancellation in Automotive Application Using Mass Imbalance & Centrifugal Force Generation (CFG) Principle

2024-04-09
2024-01-2343
A variety of structures resonate when they are excited by external forces at, or near, their natural frequencies. This can lead to high deformation which may cause damage to the integrity of the structure. There have been many applications of external devices to dampen the effects of this excitation, such as tuned mass dampers or both semi-active and active dampers, which have been implemented in buildings, bridges, and other large structures. One of the active cancellation methods uses centrifugal forces generated by the rotation of an unbalanced mass. These forces help to counter the external excitation force coming into the structure. This research focuses on active force cancellation using centrifugal forces (CFG) due to mass imbalance and provides a virtual solution to simulate and predict the forces required to cancel external excitation to an automotive structure. This research tries to address the challenges to miniaturize the CFG model for a body-on-frame truck.
Technical Paper

Evaluation of a Design Support Tool Incorporating Sensory Performance Model of Ride Comfort for Conceptual Design of Controlled Suspensions

2024-04-09
2024-01-2292
The objective of this study is to introduce and assess a computational tool designed to facilitate product development via sensory scores, which serve as a quantifiable representation of human sensory experiences. In the context of designing ride comfort performance, the specialized terminology—either technical or sensory—often served as a barrier to comprehension among the diverse set of specialists constituting the multidisciplinary team. In a previous study by the authors introduced a tool that incorporated a model of sensory performance, utilizing sensory scores as universally comprehensible metrics. However, the tool had yet to be appraised by a genuine cross-functional team. In this study, the tool underwent evaluation through a user-testing process involving twenty-five cross-functional team members engaged in the conceptual design phase at an automotive manufacturing company.
Technical Paper

An advanced tire modeling methodology considering road roughness for chassis control system development

2024-04-09
2024-01-2317
As the automotive industry accelerates its virtual engineering capabilities, there is a growing requirement for increased accuracy across a broad range of vehicle simulations. Regarding control system development, utilizing vehicle simulations to conduct ‘pre-tuning’ activities can significantly reduce time and costs. However, achieving an accurate prediction of, e.g., stopping distance, requires accurate tire modeling. The Magic Formula tire model is often used to effectively model the tire response within vehicle dynamics simulations. However, such models often: i) represent the tire driving on sandpaper; and ii) do not accurately capture the transient response over a wide slip range. In this paper, a novel methodology is developed using the MF-Tyre/MF-Swift tire model to enhance the accuracy of ABS braking simulations.
Technical Paper

Study on Aircraft Wing Collision Avoidance through Vision-Based Trajectory Prediction

2024-04-09
2024-01-2310
When the aircraft towing operations are carried out in narrow areas such as the hangars or parking aprons, it has a high safety risk for aircraft that the wingtips may collide with the surrounding aircraft or the airport facility. A real-time trajectory prediction method for the towbarless aircraft taxiing system (TLATS) is proposed to evaluate the collision risk based on image recognition. The Yolov7 module is utilized to detect objects and extract the corresponding features. By obtaining information about the configuration of the airplane wing and obstacles in a narrow region, a Long Short-Term Memory (LSTM) encoder-decoder model is utilized to predict future motion trends. In addition, a video dataset containing the motions of various airplane wings in real traction scenarios is constructed for training and testing.
X